Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in-situ synchrotron radiation X-ray diffraction (in-situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in-situ infrared spectroscopy (in-situ FTIR). Upon heating, fluoride substituted LiBH4 forms (LiBH4-xFx) and decomposition occurs, releasing diborane and solid decomposition products. The decomposition temperature is reduced more than fourfold relative to the individual constituents, with decomposition commencing at T / °C = 80 °C. The degree of fluoride substitution is quantified by sequential Rietveld refinement and shows a selective manner of substitution. In-situ FTIR experiments reveal formation of bands originating from LiBH4-xFx. Formation of LiF and observation of diborane release implies that the decomposing materials have a composition that facilitates formation of diborane and LiF, i.e. LiBH4-xFx (LiBH3F). An alternative approach for fluoride substitution was performed, by addition of Et3N∙3HF to LiBH4, yielding extremely unstable products. Spontaneous decomposition indicates fluoride substitution to have occurred. From our point of view, this is the most significant destabilization effect seen for borohydride materials so far.
  
Two reactive hydride composite systems, Ca(BH4)2–NaNH2 and Mg(BH4)2–NaNH2, were systematically studied by in situ synchrotron radiation powder diffraction, in situ Fourier transform infrared spectroscopy, thermogravimetric analysis and differential scanning calorimetry coupled with mass spectrometry. Metathesis reactions between the amides and borohydrides take place in both systems between 100°C and 150°C yielding amorphous materials with the proposed composition M(BH4)(NH2). Simultaneously, a fraction of NaNH2 decomposes to Na3N and ammonia via a complex pathway. The main gas released under 300°C is ammonia for both systems, while significant amounts of hydrogen are released only above 350°C.
  • Structure and properties of complex hydride perovskite materials
    P. Schouwink, M.B. Ley, A. Tissot, H. Hagemann, T.R. Jensen, L. Smrcok and R. Cerný
    Nature Communications, 5 (2014), p5706
    DOI:10.1038/ncomms6706 | unige:43536 | Abstract | Article HTML
 
Perovskite materials host an incredible variety of functionalities. Although the lightest element, hydrogen, is rarely encountered in oxide perovskite lattices, it was recently observed as the hydride anion H−, substituting for the oxide anion in ​BaTiO3. Here we present a series of 30 new complex hydride perovskite-type materials, based on the non-spherical ​tetrahydroborate anion ​BH4− and new synthesis protocols involving rare-earth elements. Photophysical, electronic and ​hydrogen storage properties are discussed, along with counterintuitive trends in structural behaviour. The electronic structure is investigated theoretically with density functional theory solid-state calculations. BH4-specific anion dynamics are introduced to perovskites, mediating mechanisms that freeze lattice instabilities and generate supercells of up to 16 × the unit cell volume in AB(BH4)3. In this view, homopolar hydridic di-hydrogen contacts arise as a potential tool with which to tailor crystal symmetries, thus merging concepts of molecular chemistry with ceramic-like host lattices. Furthermore, anion mixing ​BH4−â†X− (X−=Cl−, Br−, I−) provides a link to the known ABX3 halides.
  
  • Hydrogen-fluorine exchange in NaBH4-NaBF4
    L. Rude, U. Filso, V. D'Anna, A. Spyratou Stratmann, B. Richter, S. Hino, O. Zavorotynska, M. Baricco, M.H. Sørby, B.C. Hauback, H. Hagemann, F. Besenbacher, J. Skibsted and T.R. Jensen
    Physical Chemistry Chemical Physics, 15 (2013), p18185-18194
    DOI:10.1039/c3cp52815d | unige:30153 | Abstract | Article PDF
Hydrogen-fluorine exchange in the NaBH4–NaBF4 system is investigated with a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state 19F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2− complex ion, reproducing the observation of a 19F chemical shift at 144.2 ppm, which is different from that of NaBF4 at 159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 ºC. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF, BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30 % of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8 % for NaBH4 measured by the Sievert’s method under identical conditions, but more than 50 % using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.
  • Bimetallic Borohydrides in the System M(BH4)2–KBH4 (M = Mg, Mn): On the Structural Diversity
    P. Schouwink, V. D'Anna, M.B. Ley, L.M. Lawson Daku, B. Richter, T.R. Jensen, H. Hagemann and R. Cerný
    The Journal of Physical Chemistry C, 116 (20) (2012), p10829-10840
    DOI:10.1021/jp212318s | unige:21580 | Abstract | Article HTML | Article PDF
 
Four novel bimetallic borohydrides have been discovered, K2M(BH4)4 (M = Mg or Mn), K3Mg(BH4)5, and KMn(BH4)3, and are carefully investigated structurally as well as regarding their decomposition reaction mechanism by means of in situ synchrotron radiation powder X-ray diffraction (SR-PXD), vibrational spectroscopies (Raman and IR), thermal analysis (TGA and DTA), and ab initio density functional theory (DFT) calculations. Mechano-chemical synthesis (ball-milling) using the reactants KBH4, α-Mg(BH4)2, and α-Mn(BH4)2 ensures chlorine-free reaction products. A detailed structural analysis reveals significant similarities as well as surprising differences among the two isomorphs K2M(BH4)4, most importantly concerning the extent to which the complex anion [M(BH4)4]2– is isolated in the structure. Anisotropic thermal expansion and an increase in symmetry at high temperatures in K3Mg(BH4)5 is ascribed to the motion of BH4 groups inducing hydrogen repulsive effects, and the dynamics of K3Mg(BH4)5 are investigated. Decomposition in the manganese system proceeds via the formation of KMn(BH4)3, the first perovkite type borohydride reported to date.
  
Hydrogen production from waste feedstocks using supercritical water gasification (SCWG) is a promising approach towards cleaner fuel production and a solution for hard to treat wastes. In this study, the catalytic co-gasification of starch and catechol as models of carbohydrates and phenol compounds was investigated in a batch reactor at 28 MPa, 400–500 °C, from 10 to 30 min. The effects of reaction conditions, and the addition of calcium oxide (CaO) as a carbon dioxide (CO2) sorbent and TiO2 as catalyst on the gas yields and product distribution were investigated. Employing TiO2 as a catalyst alone had no significant effect on the H2 yield but when combined with CaO increased the hydrogen yield by 35% and promoted higher total organic carbon (TOC) reduction efficiencies. The process liquid effluent was characterized using GC–MS, with the results showing that the major non-polar components were phenol, substituted phenols, and cresols. An overall reaction scheme is provided.
  • NMR Study of Reorientational Motion in Alkaline-Earth Borohydrides: β and γ Phases of Mg(BH4)2 and α and β Phases of Ca(BH4)2
    A.V. Soloninin, O.A. Babanova, A.V. Skripov, H. Hagemann, B. Richter, T.R. Jensen and Y. Filinchuk
    Journal of Physical Chemistry C, 116 (7) (2012), p4913-4920
    DOI:10.1021/jp210509g | unige:18736 | Abstract | Article HTML | Article PDF
 
To study the reorientational motion of BH4 groups in β and γ phases of Mg(BH4)2 and in α and β phases of Ca(BH4)2, we have performed nuclear magnetic resonance (NMR) measurements of the 1H and 11B spin–lattice relaxation rates in these compounds over wide ranges of temperature and resonance frequency. It is found that at low temperatures the reorientational motion in β phases of Mg(BH4)2 and Ca(BH4)2 is considerably faster than in other studied phases of these alkaline-earth borohydrides. The behavior of the measured spin–lattice relaxation rates in both β phases can be satisfactorily described in terms of a Gaussian distribution of activation energies Ea with the average Ea values of 138 meV for β-Mg(BH4)2and 116 meV for β-Ca(BH4)2. The α phase of Ca(BH4)2 is characterized by the activation energy of 286 ± 7 meV. For the novel porous γ phase of Mg(BH4)2, the main reorientational process responsible for the observed spin–lattice relaxation rate maximum can be described by the activation energy of 276 ± 5 meV. The barriers for reorientational motion in different phases of alkaline-earth borohydrides are discussed on the basis of changes in the local environment of BH4 groups.
  
  • Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest SpeciesVery Important Paper
    Y. Filinchuk, B. Richter, T.R. Jensen, V. Dmitriev, D. Chernyshov and H. Hagemann
    Angewandte Chemie International Edition, 50 (47) (2011), p11162-11166
    DOI:10.1002/anie.201100675 | unige:17480 | Abstract | Article PDF
Highly occupied: A highly porous form of Mg(BH4)2 (see picture; Mg green, BH4 blue, unit cells shown in red) reversibly absorbs H2, N2, and CH2Cl2. At high pressures, this material transforms into an interpenetrated framework that has 79 % higher density than the other polymorphs. Mg(BH4)2 can act as a coordination polymer that has many similarities to metal–organic frameworks.
  • Structure and Characterization of KSc(BH4)4
    R. Cerny, D.B. Ravnsbæk, G. Severa, Y. Filinchuk, V. D'Anna, H. Hagemann, D. Haase, J. Skibsted, C.M. Jensen and T.R. Jensen
    Journal of Physical Chemistry C, 114 (45) (2010), p19540-19549
    DOI:10.1021/jp106280v | unige:14680 | Abstract | Article HTML | Article PDF
A new potassium scandium borohydride, KSc(BH4)4, is presented and characterized by a combination of in situ synchrotron radiation powder X-ray diffraction, thermal analysis, and vibrational and NMR spectroscopy. The title compound, KSc(BH4)4, forms at ambient conditions in ball milled mixtures of potassium borohydride and ScCl3 together with a new ternary chloride K3ScCl6, which is also structurally characterized. This indicates that the formation of KSc(BH4)4 differs from a simple metathesis reaction, and the highest scandium borohydride yield (~31 mol %) can be obtained with a reactant ratio KBH4:ScCl3 of 2:1. KSc(BH4)4 crystallizes in the orthorhombic crystal system, a = 11.856(5), b = 7.800(3), c = 10.126(6) Å, V = 936.4(8) Å3 at RT, with the space group symmetry Pnma. KSc(BH4)4 has a BaSO4 type structure where the BH4 tetrahedra take the oxygen positions. Regarding the packing of cations, K+, and complex anions, [Sc(BH4)4]−, the structure of KSc(BH4)4 can be seen as a distorted variant of orthorhombic neptunium, Np, metal. Thermal expansion of KSc(BH4)4 in the temperature range RT to 405 K is anisotropic, and the lattice parameter b shows strong nonlinearity upon approaching the melting temperature. The vibrational and NMR spectra are consistent with the structural model, and previous investigations of the related compounds ASc(BH4)4 with A = Li, Na. KSc(BH4)4 is stable from RT up to ~405 K, where the compound melts and then releases hydrogen in two rapid steps approximately at 460−500 K and 510−590 K. The hydrogen release involves the formation of KBH4, which reacts with K3ScCl6 and forms a solid solution, K(BH4)1−xClx. The ternary potassium scandium chloride K3ScCl6 observed in all samples has a monoclinic structure at room temperature, P21/a, a = 12.729(3), b = 7.367(2), c = 12.825(3) Å, β = 109.22(2)°, V = 1135.6(4) Å3, which is isostructural to K3MoCl6. The monoclinic polymorph transforms to cubic at 635 K, a = 10.694 Å (based on diffraction data measured at 769 K), which is isostructural to the high temperature phase of K3YCl6.
  • Pressure and Temperature Influence on the Desorption Pathway of the LiBH4−MgH2 Composite System
    U. Bösenberg, D.B. Ravnsbæk, H. Hagemann, V. D'Anna, C. Bonatto Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann and M. Dornheim
    Journal of Physical Chemistry C, 114 (35) (2010), p15212-15217
    DOI:10.1021/jp104814u | unige:14742 | Abstract | Article HTML | Article PDF
 
The decomposition pathway in LiBH4−MgH2 reactive hydride composites was investigated systematically as a function of pressure and temperature. Individual decomposition of MgH2 and LiBH4 is observed at higher temperatures and low pressures (T ≥ 450 °C and p(H2) ≤ 3 bar), whereas simultaneous desorption of H2 from LiBH4 and formation of MgB2 was observed at 400 °C and a hydrogen backpressure of p(H2) = 5 bar. The simultaneous desorption of H2 from LiBH4 and MgH2 without intermediate formation of metallic Mg could not be observed. In situ X-ray diffraction (XRD) and infrared (IR) spectroscopy reveal the present crystalline and amorphous phases.
A new alkaline transition-metal borohydride, NaSc(BH4)4, is presented. The compound has been studied using a combination of in situ synchrotron radiation powder X-ray diffraction, thermal analysis, and vibrational and NMR spectroscopy. NaSc(BH4)4 forms at ambient conditions in ball-milled mixtures of sodium borohydride and ScCl3. A new ternary chloride Na3ScCl6 (P21/n, a = 6.7375(3) Å, b = 7.1567(3) Å, c = 9.9316(5) Å, β = 90.491(3)°, V = 478.87(4) Å3), isostructural to Na3TiCl6, was identified as an additional phase in all samples. This indicates that the formation of NaSc(BH4)4 differs from a simple metathesis reaction, and the highest scandium borohydride yield (22 wt %) was obtained with a reactant ratio of ScCl3/NaBH4 of 1:2. NaSc(BH4)4 crystallizes in the orthorhombic crystal system with the space group symmetry Cmcm (a = 8.170(2) Å, b = 11.875(3) Å, c = 9.018(2) Å, V = 874.9(3) Å3). The structure of NaSc(BH4)4 consists of isolated homoleptic scandium tetraborohydride anions, [Sc(BH4)4]–, located inside slightly distorted trigonal Na6 prisms (each second prism is empty, triangular angles of 55.5 and 69.1°). The experimental results show that each Sc3+ is tetrahedrally surrounded by four BH4 tetrahedra with a 12-fold coordination of H to Sc, while Na+ is surrounded by six BH4 tetrahedra in a quite regular octahedral coordination with a (6 + 12)-fold coordination of H to Na. The packing of Na+ cations and [Sc(BH4)4]– anions in NaSc(BH4)4 is a deformation variant of the hexagonal NiAs structure type. NaSc(BH4)4 is stable from RT up to ∼410 K, where the compound melts and then releases hydrogen in two rapidly occurring steps between 440 and 490 K and 495 and 540 K. Thermal expansion of NaSc(BH4)4 between RT and 408 K is anisotropic, and lattice parameter b shows strong anomaly close to the melting temperature.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024